首页| JavaScript| HTML/CSS| Matlab| PHP| Python| Java| C/C++/VC++| C#| ASP| 其他|
购买积分 购买会员 激活码充值

您现在的位置是:虫虫源码 > ASP > pca-sift: A More Distinctive Representation for Local Image Descriptors

pca-sift: A More Distinctive Representation for Local Image Descriptors

  • 资源大小:2.03 MB
  • 上传时间:2021-06-30
  • 下载次数:0次
  • 浏览次数:1次
  • 资源积分:1积分
  • 标      签: linux

资 源 简 介

Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms.  Mikolajczyk and Schmid recently evaluated a variety of approaches and identified the SIFT algorithm as being the most resistant to common image deformations.  This paper examines (and improves upon) the local image descriptor used by SIFT.  Like SIFT, our descriptors encode the salient aspects of the image gradient in the feature point"s neighborhood; however, instead of using SIFT"s smoothed weighted histograms, we apply Principal Components Analysis (PCA) to the normalized gradient patch.  Our experiments demonstrate that the PCA-based local descriptors are more distinctive, more robust to image deformations, and more compact than the standard SIFT representation.  We also present results showing that using these descriptors in an image retrieval applic

相 关 资 源

您 可 能 感 兴 趣 的

同 类 别 推 荐

VIP VIP