首页| JavaScript| HTML/CSS| Matlab| PHP| Python| Java| C/C++/VC++| C#| ASP| 其他|
购买积分 购买会员 激活码充值

您现在的位置是:虫虫源码 > Matlab > SVM数据分类器算法

SVM数据分类器算法

  • 资源大小:326.53 kB
  • 上传时间:2021-06-29
  • 下载次数:0次
  • 浏览次数:1次
  • 资源积分:1积分
  • 标      签: Matlab

资 源 简 介

优秀论文及配套源码。首先阐述了负荷预测的应用研究现状,概括了负荷预测的特点及其影响因素,归纳了短期负荷预测的常用方法,并分析了各种方法的优劣;接着介绍了作为支持向量机(SVM)理论基础的统计学习理论和SVM的原理,推导了SVM回归模型;本文采用最小二乘支持向量机(LSSVM)模型,根据浙江台州某地区的历史负荷数据和气象数据,分析影响预测的各种因素,总结了负荷变化的规律性,对历史负荷数据中的“异常数据”进行修正,对负荷预测中要考虑的相关因素进行了归一化处理。LSSVM中的两个参数对模型有很大影响,而目前依然是基于经验的办法解决。对此,本文采用粒子群优化算法对模型参数进行寻优,以测试集误差作为判决依据,实现模型参数的优化选择,使得预测精度有所提高。实际算例表明,本文的预测方法收敛性好、有较高的预测精度和较快的训练速度。-first expounds the recent application research of load forecasting, summarized the characteristics of load forecasting and influencing factors, summed up common methods of short-term load forecasting, and analyzed the advantages and disadvantages of each method then introduced statistical learning theory and the principle of SVM as the basis of support vector machine (SVM ) theory, SVM regression model is derived this paper adopted least squares support vector machine (LSSVM) model, according to the historical load data and meteorological data of a certain area of Zhejiang Taizhou, Analysised the various factors affecting the

文 件 列 表

数据
a23.xls
a45.xls
B2.xls
b3.xls
B4.xls
B5.xls
bdata1.xls
AdaptFunc.m
AdaptFunc1.m
BaseStepPso.m
gaijin.m
InitSwarm.m
pso.m
shorttime.m
基于支持向量机的短期电力负荷预测.doc

相 关 资 源

您 可 能 感 兴 趣 的

同 类 别 推 荐

VIP VIP
  • 11 2小时前 成为了本站会员

  • 开心快活人 4小时前 成为了本站会员

  • 晋财 5小时前 成为了本站会员

  • WYG 1天前 成为了本站会员

  • Shine 1天前 成为了本站会员

  • 柳贻 1天前 成为了本站会员

  • hallelujah_HL 1天前 成为了本站会员

  • 焦昱贺 1天前 成为了本站会员

  • Rubin 1天前 成为了本站会员

  • Li 2天前 成为了本站会员

0.182379s