首页| JavaScript| HTML/CSS| Matlab| PHP| Python| Java| C/C++/VC++| C#| ASP| 其他|
购买积分 购买会员 激活码充值

您现在的位置是:虫虫源码 > 其他 > 本人编写的incremental 随机神经元网络算法,该算法最大的特点是可以保证approximation特性,而且速度快效果不错,可以作为学术上的比较和分析。

本人编写的incremental 随机神经元网络算法,该算法最大的特点是可以保证approximation特性,而且速度快效果不错,可以作为学术上的比较和分析。

资 源 简 介

本人编写的incremental 随机神经元网络算法,该算法最大的特点是可以保证approximation特性,而且速度快效果不错,可以作为学术上的比较和分析。目前只适合benchmark的regression问题。 具体效果可参考 G.-B. Huang, L. Chen and C.-K. Siew, “Universal Approximation Using Incremental Constructive Feedforward Networks with Random Hidden Nodes”, IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 879-892, 2006. -I prepared by incremental random neural network algorithm, which is characterized by the largest approximation properties can be guaranteed, and fast good results can be used as an academic comparison and analysis. The current benchmark is only suitable for the regression problem. Specific effects may refer G.-B. Huang, L. Chen and C.-K. Siew,

文 件 列 表

IncrementalRandomNeurons.m

相 关 资 源

您 可 能 感 兴 趣 的

同 类 别 推 荐

VIP VIP