资 源 简 介
应用背景除原NSGA2算法以外,不但编写了收敛性指标以及均匀性指标,而且对ZDT1-6,DTLZ1-3等经典测试进行了测试,同时界面友好。同时内置了各个测试函数的理想pareto最优解集,做图时同时画出算法求解的结果以及最优结果,便于比较。关键技术NSGA-Ⅱ是目前最流行的多目标进化算法之一,它降低了非劣排序遗传算法的复杂性,具有运行速度快,解集的收敛性好的优点,成为其他多目标优化算法性能的基准。NSGA-Ⅱ算法是 Srinivas 和 Deb 于 2000 年在 NSGA 的基础上提出的,它比 NSGA算法更加优越:它采用了快速非支配排序算法,计算复杂度比 NSGA 大大的降低;采用了拥挤度和拥挤度比较算子,代替了需要指定的共享半径 shareQ,并在快速排序后的同级比较中作为胜出标准,使准 Pareto 域中的个体能扩展到整个 Pareto 域,并均匀分布,保持了种群的多样性;引入了精英策略,扩大了采样空间,防止最佳个体的丢失,提高了算法的运算速度和鲁棒性。