资 源 简 介
由于K-均值聚类算法局部最优的特点,而模拟退火算法理论上具有全局最优的特点。因此,用模拟退火算法对聚类进行了改进。20组聚类仿真表明,平均每次对K结果值改进8次左右,效果显著。下一步工作:实际上在高温区随机生成邻域是个组合爆炸问题(见本人上载软件‘k-均值聚类算法’所述),高温跳出局部解的概率几乎为0,因此正考虑采用凸包约束进行模拟聚类,相关工作正在进行。很快将奉献给各位朋友。-as K-means clustering algorithm for optimal local characteristics, and simulated annealing algorithm theory with the characteristics of the global optimum. Thus, simulated annealing algorithm for clustering improvements. Cluster Group of 20 simulations show that the average value of K results improved about eight times, the results are obvious. The next step : In fact, in high temperature generated random neighborhood is a combination of explosives (see my software on the "k-means clustering algorithm" mentioned above), high-temperature solution of partial out almost zero probability, it is considering the use of convex hull bound for simulation cluster, the work under way . Soon dedication to the ladies.