首页| JavaScript| HTML/CSS| Matlab| PHP| Python| Java| C/C++/VC++| C#| ASP| 其他|
购买积分 购买会员 激活码充值

您现在的位置是:虫虫源码 > Matlab > 基于希尔波特独立性准则的ICA算法

基于希尔波特独立性准则的ICA算法

资 源 简 介

资源描述  |--------------------|         | FAST KERNEL ICA    |         |--------------------| Version 1.0 - February 2007 MPL license, see below This package contains a Matlab implementation of the Fast Kernel ICA  algorithm as described in [1].  Kernel ICA is based on minimizing a kernel measure of statistical independence, namely the Hilbert-Schmidt norm of the covariance operator in feature space (see [3]: this is called HSIC).  Given an (n x m) matrix W of n samples from m mixed sources, the goal is to find a demixing matrix X such that the dependence between the estimated unmixed sources X"*W is minimal.  FastKICA uses an approximate Newton method to perfom this optimization.  For more information on the algorithm, read [1],

文 件 列 表

fastKICA
fastKICA

相 关 资 源

您 可 能 感 兴 趣 的

同 类 别 推 荐

VIP VIP