资 源 简 介
人工神经网络(Aartificial Neural Network,下简称ANN)是模拟生物神经元的结构而提出的一种信息处理方法。早在1943年,已由心理学家Warren S.Mcculloch和数学家Walth H.Pitts提出神经元数学模型,后被冷落了一段时间,80年代又迅猛兴起[1]。ANN之所以受到人们的普遍关注,是由于它具有本质的非线形特征、并行处理能力、强鲁棒性以及自组织自学习的能力。其中研究得最为成熟的是误差的反传模型算法(BP算法,Back Propagation),它的网络结构及算法直观、简单,在工业领域中应用较多。-Artificial Neural Networks (Aartificial Neural Network, under the short title of ANN) is a simulation of the structure of biological neurons and the information put forward a method of treatment. At early 1943, by Warren S. Mcculloch psychologists and mathematicians Walth H. Pitts proposed mathematical model of neurons, was left out in the cold for some time, and the rapid rise of the 80" s [1]. ANN because the general concern of the people is the essence of it is because of the non-linear characteristics of parallel processing capabilities, strong robustness and self-organizing capacity of self-learning. Research one of the most sophisticated are the error-propagation model of the algorithm (BP algorithm, Back Pro