首页| JavaScript| HTML/CSS| Matlab| PHP| Python| Java| C/C++/VC++| C#| ASP| 其他|
购买积分 购买会员 激活码充值

您现在的位置是:虫虫源码 > 其他 > 与频繁闭项集还原数据集维度

与频繁闭项集还原数据集维度

  • 资源大小:26.99 kB
  • 上传时间:2021-06-30
  • 下载次数:0次
  • 浏览次数:1次
  • 资源积分:1积分
  • 标      签: 数据 还原 频繁 项集 维度

资 源 简 介

Introduction Dataset is a transactional database consisting of list of transactions and each of them containing a finite set of items. Dimensionality reduction is the process of finding a set of new items (factor-items) which is considerably smaller than the original set. These factor-items aims to comprise full or nearly full information about the original elements. This algorithm has been originally proposed by Petr Krajca, Jan Outrata, and Vilem Vychodil [1]. In [1], Krajca et al. show that frequent closed itemset can be used to efficiently find factor-items and thus accomplishing data dimensionality reduction. Also, if only frequent closed itemsets is not enough, they propose an on-demand solution to find additional factor-items until a configurable approximation degree is achieved. To identify frequent closed itemsets this project also implements the LCM algorithm [2] origi

相 关 资 源

您 可 能 感 兴 趣 的

同 类 别 推 荐

VIP VIP
  • 11 3小时前 成为了本站会员

  • 开心快活人 6小时前 成为了本站会员

  • 晋财 6小时前 成为了本站会员

  • WYG 1天前 成为了本站会员

  • Shine 1天前 成为了本站会员

  • 柳贻 1天前 成为了本站会员

  • hallelujah_HL 1天前 成为了本站会员

  • 焦昱贺 1天前 成为了本站会员

  • Rubin 1天前 成为了本站会员

  • Li 2天前 成为了本站会员

0.187083s