首页| JavaScript| HTML/CSS| Matlab| PHP| Python| Java| C/C++/VC++| C#| ASP| 其他|
购买积分 购买会员 激活码充值

您现在的位置是:虫虫源码 > 其他 > CUDA实现隐藏的马尔可夫模型的训练和分类

CUDA实现隐藏的马尔可夫模型的训练和分类

资 源 简 介

Introduction This is an implementation of hidden Markov model (HMM) training and classification for NVIDIA CUDA platform. A serial implementation in C is also included for comparison. The implementation of HMM follows the tutorial paper by Rabiner. The three problem for HMM defined in the paper are: 1. compute the probability of the observation sequence 1. compute the most probable sequence 1. train hidden Markov mode parameters This implementation supports all the three problems. However there is no support for continuous densities. Usage The command line usage is as follows. $ ./hmm -hhmm [-hnt] [-c config] [-p(1|2|3)]usage: -h help -c configuration file -t output computation time -p1 compute the probability of the observation sequence -p2 compute the most probable sequence (Viterbi) -p3 train hidden Markov mode parameters (Baum-Welch) -n number of iterations Configuration The config

文 件 列 表

chmm-0.01
Makefile
hmm.c
hmm.cu
fhmm.c
TODO

相 关 资 源

您 可 能 感 兴 趣 的

同 类 别 推 荐

VIP VIP
0.173464s