首页| JavaScript| HTML/CSS| Matlab| PHP| Python| Java| C/C++/VC++| C#| ASP| 其他|
购买积分 购买会员 激活码充值

您现在的位置是:虫虫源码 > 其他 > 不起眼的物化视图尺寸估计技术在OLAP

不起眼的物化视图尺寸估计技术在OLAP

资 源 简 介

A data warehouse cannot materialize all possible views, hence we must estimate quickly, accurately, and reliably the size of views to determine the best candidates for materialization. Many available techniques for view-size estimation make particular statistical assumptions and their error can be large. Comparatively, unassuming probabilistic techniques are slower, but they estimate accurately and reliability very large view sizes using little memory. We propose five unassuming hashing-based view-size estimation techniques including Stochastic Probabilistic Counting, LogLog Probabilistic Counting, Generalized Counting, Gibbons-Tirthapura, and Adaptive Counting. More details are available at http://arxiv.org/abs/cs/0703058.

文 件 列 表

sourcecode
estimator.cpp
estimator.h
exactgroupby.cpp
generate1drandomdata.cpp
makefile
mersennetwister.h
randomhasher.h
randomlib.c
randomlib.h
sample.cpp
statestimator.cpp
stogibbons.h
trailingzeros.h

相 关 资 源

您 可 能 感 兴 趣 的

同 类 别 推 荐

VIP VIP
0.230124s