资 源 简 介
GENNET是一个通过遗传算法优化权重的16个神经元的全连接神经网络。训练目的是使网络在一定假设的激励下,随时间产生同目标函数同样的响应,即:可以把此网络制作为一个任意波形的信号发生器。
程序分3个示例说明遗传算法进化过程中网络输出的变化趋势。可以看出网络输出(蓝色曲线)随着时间变化逐渐逼近目标函数(红色曲线)。此程序不仅可以学习遗传算法,也可以用于研究全连接网络的直观示例。-GENNET is a genetic algorithm to optimize the weights by the 16 neurons fully connected neural networks. Training purposes is to enable network inspired by certain assumptions, over time, produce the same response with the objective function, namely: the network can be produced as an arbitrary waveform signal generator. Procedure, three examples illustrate the evolution of genetic algorithms in the network output trends. We can see that the network output (blue curve) changes over time, gradually approaching the objective function (red curve). This program can not only learn from the genetic algorithm can also be used to study visual example of a fully connected network.