首页| JavaScript| HTML/CSS| Matlab| PHP| Python| Java| C/C++/VC++| C#| ASP| 其他|
购买积分 购买会员 激活码充值

您现在的位置是:虫虫源码 > 其他 > 矩阵快速求逆算法

矩阵快速求逆算法

资 源 简 介

// 矩阵求逆在3D程序中很常见,主要应用于求Billboard矩阵。按照定义的计算方法乘法运算,严重影响了性能。在需要大量Billboard矩阵运算时,矩阵求逆的优化能极大提高性能。这里要介绍的矩阵求逆算法称为全选主元高斯-约旦法。// // 高斯-约旦法(全选主元)求逆的步骤如下:// // 首先,对于 k 从 0 到 n - 1 作如下几步:// // 从第 k 行、第 k 列开始的右下角子阵中选取绝对值最大的元素,并记住次元素所在的行号和列号,在通过行交换和列交换将它交换到主元素位置上。这一步称为全选主元。// m(k, k) = 1 / m(k, k)// m(k, j) = m(k, j) * m(k, k),j = 0, 1, ..., n-1;j != k// m(i, j) = m(i, j) - m(i, k) * m(k, j),i, j = 0, 1, ..., n-1;i, j != k// m(i, k) = -m(i, k) * m(k, k),i = 0, 1, ..., n-1;i != k// 最后,根据在全选主元过程中所记录的行、列交换的信息进行恢复,恢复的原则如下:在全选主元过程中,先交换的行(列)后进行恢复;原来的行(列)交换用列(行)交换来恢复。// // 实现(4阶矩阵)

文 件 列 表

inver_matrix.c.txt

相 关 资 源

您 可 能 感 兴 趣 的

同 类 别 推 荐

VIP VIP