资 源 简 介
surf算法的具体实现:
Surf算法原理
(1)、构建Hessian矩阵
(2)、构建尺度空间
图像的尺度空间是这幅图像在不同解析度下的表示,由式(4)知,一幅图像j(X)在不同解析度下的表示可以利用高斯核G(£)的卷积来实现,图像的尺度大小一般用高斯标准差来表示[6]。在计算视觉领域,尺度空间被象征性的表述为一个图像金字塔,其中,输入图像函数反复与高斯函数的核卷积并反复对其进行二次抽样,这种方法主要用于Sift算法的实现,但每层图像依赖于前一层图像,并且图像需要重设尺寸,因此,这种计算方法运算量较大,而SURF算法申请增加图像核的尺寸,这也是SIFT算法与SURF算法在使用金字塔原理方面的不同。算法允许尺度空间多层图像同时被处理,不需对图像进行二次抽样,从而提高算法性能。图1(a)是传统方式建立一个如图所示的金字塔结构,图像的寸是变化的,