首页| JavaScript| HTML/CSS| Matlab| PHP| Python| Java| C/C++/VC++| C#| ASP| 其他|
购买积分 购买会员 激活码充值

您现在的位置是:虫虫源码 > 其他 > pr-toolkit

pr-toolkit

  • 资源大小:1.18 MB
  • 上传时间:2021-06-30
  • 下载次数:0次
  • 浏览次数:1次
  • 资源积分:1积分
  • 标      签: prtoolkit

资 源 简 介

This project contains an implementation of an unsupervised machine learning framework called Posterior Regularization. Posterior Regularization is a probabilistic framework for structured, weakly supervised learning. Our framework efficiently incorporates indirect supervision via constraints on posterior distributions of probabilistic models with latent variables. Posterior Regularization separates model complexity from the complexity of structural constraints it is desired to satisfy. By directly imposing decomposable regularization on the posterior moments of latent variables during learning, we retain the computational efficiency of the unconstrained model while ensuring desired constraints hold in expectation. This code is based on several research projects and includes implementations of code for part of speech and grammar induction, as well as word alignment. See the main page for a more detailed description.

文 件 列 表

pr-dep-parsing.2010.11
README.txt
lib
src
build.xml
dist
stats-example.txt
corpus-params-example.txt

相 关 资 源

您 可 能 感 兴 趣 的

同 类 别 推 荐

VIP VIP