资 源 简 介
主成分(PCA)是一种基于代数特征的人脸识别方法,是一种基于全局特征的人脸识别方法, 它基于K-L分解。基于主成分分析的人脸识别方法首次将人脸看作一个整体,特征提取由手 工定义到利用统计学习自动获取是人脸识别方法的一个重要转变。简单的说,它的原理就是将一高维的向量,通过一个特殊的特征向量矩阵,投影到一个低维的向量空间中,表示为一个低维向量,并不会损失任何信息。即通过低维向量和特征向量矩阵,可以完全重构出 所对应的原来高维向量。特征脸方法就是将包含人脸的图像区域看作是一种随机向量,因此,可以采用K-L变换获得其正交K-L基底。对应其中较大特征值的基底具有与人脸相似的形状 ,因此又称为特征脸。利用这些基底的线性组合可以描述、表达和逼近人脸图像,因此可以进行人脸识别与合成。识别过程就是将人脸图像映射到由特征脸张成的子空间 上,比较其与己知人脸在特征空间中的位置,从而进行判别。