有导师学习神经网络的回归拟合——基于近红外光谱的汽油辛烷值预测
资 源 简 介
神经网络的学习规则又称神经网络的训练算法,用来计算更新神经网络的权值和阈值。学习规则有两大类别:有导师学习和无导师学习。在有导师学习中,需要为学习规则提供一系列正确的网络输入/输出对(即训练样本),当网络输入时,将网络输出与相对应的期望值进行比较,然后应用学习规则调整权值和阈值,使网络的输出接近于期望值。而在无导师学习中,权值和阈值的调整只与网络输入有关系,没有期望值,这类算法大多用聚类法,将输入模式归类于有限的类别。本章将详细分析两种应用最广的有导师学习神经网络(BP神经网络及RBF神经网络)的原理及其在回归拟合中的应用。
文 件 列 表
chapter25
main.m
spectra_data.mat