首页| JavaScript| HTML/CSS| Matlab| PHP| Python| Java| C/C++/VC++| C#| ASP| 其他|
购买积分 购买会员 激活码充值

您现在的位置是:虫虫源码 > Matlab > 双变量核密度估计

双变量核密度估计

  • 资源大小:213.03 kB
  • 上传时间:2021-06-29
  • 下载次数:0次
  • 浏览次数:1次
  • 资源积分:1积分
  • 标      签: Matlab matlab 估计 密度 变量

资 源 简 介

该程序实现了双变量高斯核密度估计。它可以用于估计双变量概率函数,累积分布函数(CDF)和反演CDF(ICDF)。核密度估计在估计边界区域的时候会出现边界效应。在单变量核密度估计的基础上,可以建立风险价值的预测模型。通过对核密度估计变异系数的加权处理,可以建立不同的风险价值的预测模型。由给定样本点集合求解随机变量的分布密度函数问题是概率统计学的基本问题之一。解决这一问题的方法包括参数估计和非参数估计。参数估计又可分为参数回归分析和参数判别分析。在参数回归分析中,人们假定数据分布符合某种特定的性态,如线性、可化线性或指数性态等,然后在目标函数族中寻找特定的解,即确定回归模型中的未知参数。在参数判别分析中,人们需要假定作为判别依据的、随机取值的数据样本在各个可能的类别中都服从特定的分布。经验和理论说明,参数模型的这种基本假定与实际的物理模型之间常常存在较大的差距,这些方法并非总能取得令人满意的结果。由于上述缺陷,Rosenblatt和Parzen提出了非参数估计方法,即核密度估计方法.由于核密度估计方法不利用有关数据分布的先验知识,对数据分布不附加任何假定,是一种从数据样本本身出发研究数据分布特征的方法,因而,在统计学理论和应用领域均受到高度的重视。

文 件 列 表

gkde2.m
gkde2test.m
html
gkde2test.html
gkde2test_01.png
gkde2test_02.png
gkde2test_03.png
gkde2test_04.png
gkde2test_05.png
gkde2test_06.png
gkde2test_07.png
gkde2test_08.png
gkde2test_09.png
gkde2test_10.png
gkde2test_11.png
license.txt

相 关 资 源

您 可 能 感 兴 趣 的

同 类 别 推 荐

VIP VIP
0.164549s