资 源 简 介
改进遗传算法-郭涛算法做最优化问题很管用,算法的基本思想是
先任意产生n个随机数,然后从n个数里随机选择m个数,再有这m个
数合成一个新数,将这个新数同n个数中间适应值函数值的最差的比较,
如果好的话就取代最差的那个,如果它比最好的还要好的话,则把最好的
也取代。如果比最差的坏,则重新合成一个新数。依次循环下去。
程序的奇妙之处是GA_crossover()函数,产生的新数确实比较好,看看
那位大侠能改进一下,产生比这跟好的数。-improved genetic algorithm- Guo Tao done optimization algorithm is very effective, and the algorithm is the first basic idea arbitrary n generated random number and then the number li n m randomly selected number, and this number m of a new synthesis of the new middle with n number fitness function of the worst by comparison, if a good case to replace the worst, um, if it even than the best, then ruled the best have replaced. If worse than the worst, a de novo synthesis of new. Followed by the cycle continues. The magic of procedures is GA_crossover () function, the new really good to see heroes who can be improved upon, it generated more than a few with a good.