资 源 简 介
LDA是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。文档到主题服从Dirichlet分布,主题到词服从多项式分布。
LDA是一种非监督机器学习技术,可以用来识别大规模文档集(document collection)或语料库(corpus)中潜藏的主题信息。它采用了词袋(bag of words)的方法,这种方法将每一篇文档视为一个词频向量,从而将文本信息转化为了易于建模的数字信息。但是词袋方法没有考虑词与词之间的顺序,这简化了问题的复杂性,同时也为模型的改进提供了契机。每一篇文档代表了一些主题所构成的一个概率分布,而每一个主题又代表了很多单词所构成的一个概率分布。
对于语料库中的每篇文档,LDA定义了如下生成过程(generative process):
1. 对每一篇文档,从主题分布中抽取一个主题;
2. 从上述被抽到的主题所对应的单词分布中抽取一个单词;
3. 重复上述过程直至遍历文档中的每一个单词。