首页| JavaScript| HTML/CSS| Matlab| PHP| Python| Java| C/C++/VC++| C#| ASP| 其他|
购买积分 购买会员 激活码充值

您现在的位置是:虫虫源码 > 其他 > 基于遗传模拟退火算法的聚类算法

基于遗传模拟退火算法的聚类算法

资 源 简 介

遗传算法在运行早期个体差异较大,当采用经典的轮盘赌方式选择时,后代产生的个数与父个体适应度大小成正比,因此在早期容易使个别好的个体的后代充斥整个种群,造成早熟。在遗传算法后期,适应度趋向一致,优秀的个体在产生后代时,优势不明显,从而使整个种群进化停滞不前。因此对适应度适当地进行拉伸是必要的,这样在温度高时(遗传算法的前期),适应度相近的个体产生的后代概率相近;而当温度不断下降后,拉伸作用加强,使适应度相近的个体适应度差异放大,从而使得优秀的个体优势更明显。由于模拟退火算法和遗传算法可以互相取长补短,因此有效地克服了传统遗传算法的早熟现象,同时根据聚类问题的具体情况设计遗传编码方式、适应度函数,使该算法更有效、更快速地收敛到全局最优解。本案例研究了基于遗传模拟退火算法的聚类算法。

文 件 列 表

GAFCM.m
initFCM.m
iterateFCM.m
ObjFun.m
SAGAFcmMain.m
FCMfun.m
FCMpure.m
X.mat

相 关 资 源

您 可 能 感 兴 趣 的

同 类 别 推 荐

VIP VIP