资 源 简 介
基于HOG特征提取的图像分类器,HOG的核心思想是所检测的局部物体外形能够被光强梯度或边缘方向的分布所描述。通过将整幅图像分割成小的连接区域称为cells,每个cell生成一个方向梯度直方图或者cell中pixel的边缘方向,这些直方图的组合可表示出所检测目标的目标)描述子。为改善准确率,局部直方图可以通过计算图像中一个较大区域称为block的光强作为measure被对比标准化,然后用这个measure归一化这个block中的所有cells.这个归一化过程完成了更好的照射/阴影不变性。