首页| JavaScript| HTML/CSS| Matlab| PHP| Python| Java| C/C++/VC++| C#| ASP| 其他|
购买积分 购买会员 激活码充值

您现在的位置是:虫虫源码 > Python > Pytorch implementation of Generative Adversarial Networks

Pytorch implementation of Generative Adversarial Networks

  • 资源大小:17.66 MB
  • 上传时间:2021-06-29
  • 下载次数:0次
  • 浏览次数:1次
  • 资源积分:1积分
  • 标      签: python

资 源 简 介

# pytorch-MNIST-CelebA-GAN-DCGAN Pytorch implementation of Generative Adversarial Networks (GAN) [1] and Deep Convolutional Generative Adversarial Networks (DCGAN) [2] for MNIST [3] and CelebA [4] datasets. * If you want to train using cropped CelebA dataset, you have to change isCrop = False to isCrop = True. * you can download   - MNIST dataset: http://yann.lecun.com/exdb/mnist/   - CelebA dataset: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html * pytorch_CelebA_DCGAN.py requires 64 x 64 size image, so you have to resize CelebA dataset (celebA_data_preprocess.py). * pytorch_CelebA_DCGAN.py added learning rate decay code. ## Implementation details * GAN ![GAN](pytorch_GAN.png) * DCGAN ![Loss](pytorch_DCGAN.png) ## Resutls ### MNIST

文 件 列 表

pytorch-MNIST-CelebA-GAN-DCGAN-master
CelebA_DCGAN_crop_results
CelebA_DCGAN_results
MNIST_DCGAN_results
MNIST_GAN_results
README.md
celebA_data_preprocess.py
pytorch_CelebA_DCGAN.py
pytorch_DCGAN.png
pytorch_GAN.png
pytorch_MNIST_DCGAN.py
pytorch_MNIST_GAN.py

相 关 资 源

您 可 能 感 兴 趣 的

同 类 别 推 荐

VIP VIP
0.253989s