首页| JavaScript| HTML/CSS| Matlab| PHP| Python| Java| C/C++/VC++| C#| ASP| 其他|
购买积分 购买会员 激活码充值

您现在的位置是:虫虫源码 > 其他 > 基于ARM的人脸识别系统设计与实现

基于ARM的人脸识别系统设计与实现

  • 资源大小:3755 K
  • 上传时间:2022-10-02
  • 下载次数:0次
  • 浏览次数:1次
  • 资源积分:1积分
  • 标      签: ARM 人脸识别 系统设计

资 源 简 介

人脸识别技术作为生物识别技术之一,是模式识别在图像领域中的具体运用,其应用前景非常广阔,可以应用到身份证件的鉴别、自动门禁控制系统、银行取款机、家庭安全,图片检索等领域。 人脸识别系统主要分为人脸检测定位,特征提取和人脸分类三部分。人脸的检测和定位,即从输入的图像中找到人脸及人脸存在的位置,并将人脸从背景中分离出来。在特征提取部分,先对原始人脸数据进行特征提取,之后原始数据由维数较少的有效特征数据表示并存储在数据库中,接下来进行人脸分类,在识别待测人脸图像时,将待测图像的特征数据与数据库中存储数据相比对,判断是否为库中的某一人,从而实现自动识别人脸的目的。 在过去的十年里,人脸识别技术一直是图像处理领域里具有挑战性的课题,随着研究的深入,许多人脸检测及识别算法被提出来。其中基于主成分分析的Eigenface的算法及其变形已经成为测试人脸识别系统性能的基准算法;同时Adaboost人脸检测算法,在PC上基本可以达到实时,在嵌入式产品广泛应用的今天,只有让人脸识别算法在嵌入式平台上实现,才能获得更广阔的应用,本文研究了在嵌入式平台上Adaboost人脸检测算法的性能。 嵌入式是后PC时代的一个亮点,目前已经应用在社会生活的方方面面。嵌入式产品的开发平台分为包括很多,如:DSP,ARM,PowerPC等等。本文采用的ARM9作为嵌入式开发平台,研究人脸识别在ARM平台的性能,为实用的嵌入式人脸识别系统的设计提供参考。 本文从PC平台的软件实现入手,分别实现了PC平台下的AdaBoost人脸检测算法和PCA人脸识别算法,分析了现象及结果,接下来搭建了基于ARM嵌入式系统的硬件平台,对AdaBoost人脸检测算法进行了硬件平台的移植,并得出相应实验效果。

相 关 资 源

您 可 能 感 兴 趣 的

同 类 别 推 荐

VIP VIP
  • 开心快活人 32分钟前 成为了本站会员

  • 晋财 1小时前 成为了本站会员

  • WYG 1天前 成为了本站会员

  • Shine 1天前 成为了本站会员

  • 柳贻 1天前 成为了本站会员

  • hallelujah_HL 1天前 成为了本站会员

  • 焦昱贺 1天前 成为了本站会员

  • Rubin 1天前 成为了本站会员

  • Li 2天前 成为了本站会员

  • bigfatcat1977 3天前 成为了本站会员

0.180615s