首页| JavaScript| HTML/CSS| Matlab| PHP| Python| Java| C/C++/VC++| C#| ASP| 其他|
购买积分 购买会员 激活码充值

您现在的位置是:虫虫源码 > 其他 > DAKOTA

DAKOTA

  • 资源大小:1052 K
  • 上传时间:2022-11-23
  • 下载次数:0次
  • 浏览次数:1次
  • 资源积分:1积分
  • 标      签:

资 源 简 介

Computational models are commonly used in engineering design and scientific discovery activities for simulating complex physical systems in disciplines such as fluid mechanics, structural dynamics, heat transfer, nonlinear structural mechanics, shock physics, and many others. These simulators can be an enormous aid to engineers who want to develop an understanding and/or predictive capability for complex behaviors typically observed in the corresponding physical systems. Simulators often serve as virtual prototypes, where a set of predefined system parameters, such as size or location dimensions and material properties, are adjusted to improve the performance of a system, as defined by one or more system performance objectives. Such optimization or tuning of the virtual prototype requires executing the simulator, evaluating performance objective(s), and adjusting the system parameters in an iterative, automated, and directed way. System performance objectives can be formulated, for example, to minimize weight, cost, or defects; to limit a critical temperature, stress, or vibration response; or to maximize performance, reliability, throughput, agility, or design robustness. In addition, one would often like to design computer experiments, run parameter studies, or perform uncertainty quantification (UQ). These approaches reveal how system performance changes as a design or uncertain input variable changes. Sampling methods are often used in uncertainty quantification to calculate a distribution on system performance measures, and to understand which uncertain inputs contribute most to the variance of the outputs. A primary goal for Dakota development is to provide engineers and other disciplinary scientists with a systematic and rapid means to obtain improved or optimal designs or understand sensitivity or uncertainty using simulationbased models. These capabilities generally lead to improved designs and system performance in earlier design stages, alleviating dependence on physical prototypes and testing, shortening design cycles, and reducing product development costs. In addition to providing this practical environment for answering system performance questions, the Dakota toolkit provides an extensible platform for the research and rapid prototyping of customized methods and meta-algorithms

相 关 资 源

您 可 能 感 兴 趣 的

同 类 别 推 荐

VIP VIP
  • 11 10分钟前 成为了本站会员

  • 开心快活人 3小时前 成为了本站会员

  • 晋财 3小时前 成为了本站会员

  • WYG 1天前 成为了本站会员

  • Shine 1天前 成为了本站会员

  • 柳贻 1天前 成为了本站会员

  • hallelujah_HL 1天前 成为了本站会员

  • 焦昱贺 1天前 成为了本站会员

  • Rubin 1天前 成为了本站会员

  • Li 2天前 成为了本站会员

0.192651s