解非线性方程组的一种方法:先用一种优化方法将给定初值(它有可能会使得后续的牛顿法发散)通过一条比较快的途径收敛到精确解附近
- 资源大小:33 K
- 上传时间:2024-05-03
- 下载次数:0次
- 浏览次数:0次
- 资源积分:1积分
-
标 签:
非线性
方程
初值
牛顿
资 源 简 介
解非线性方程组的一种方法:先用一种优化方法将给定初值(它有可能会使得后续的牛顿法发散)通过一条比较快的途径收敛到精确解附近,得到一个新的初始点,然后再通过牛顿法将新的初始点迭代到精确解(一定的误差范围内)。这种方法的优点在于:它可以将牛顿法快速收敛的优势发挥出来,同时又避免了该方法收敛域比较窄的缺点。