首页| JavaScript| HTML/CSS| Matlab| PHP| Python| Java| C/C++/VC++| C#| ASP| 其他|
购买积分 购买会员 激活码充值

您现在的位置是:虫虫源码 > Matlab > 这个工具箱在一个比较通用的方式中实现了该算法。

这个工具箱在一个比较通用的方式中实现了该算法。

资 源 简 介

This toolbox implements the algorithm in a fairly general way in a C file that can be called from Matlab. It allows to perform the traditional NL-means for denoising (for both B&W and color images) but also to use an arbitrary set of patches to perform the denoising. -This toolbox implements the algorithm in a fairly general way in a C file that can be called f rom Matlab. It allows to perform the traditiona l NL-means for denoising (for both B

文 件 列 表

toolbox_signal
.DS_Store
apply_colormap.m
build_gaussian_filter.m
compile_mex.m
compute_conditional_histogram.m
compute_conv_matrix.m
compute_cubic_spline.m
compute_dct_matrix.m
compute_dead_leaves_image.m
compute_diffusion_distance.m
compute_directional_kernel.m
compute_distance_matrix.m
compute_distance_to_points.m
compute_entropy.m
compute_error_threshold.m
compute_histogram.m
compute_histogram_distance.m
compute_impulse_noise.m
compute_kurtosis.m
compute_laplacian_distribution.m
compute_laplacian_matrix.m
compute_periodic_poisson.m
compute_skewness.m
compute_subwindows_energy.m
compute_subwindows_matrix.m
compute_symmetric_conditional_histogram.m
compute_texture_patchwork.m
copying
copyright
crop.m
CVS
dirac.m
display_image_layout.m
gen_brownian_motion.m
image_3d_resize.m
image_resize.m
imageplot.m
imagesc_log.m
imagesc_std.m
lena.png
load_image.m
load_signal.m
load_sound.m
mad.m
mex
perform_2d_int_translation.m
perform_adaptive_filtering.dll
perform_adaptive_filtering.mexglx
perform_adaptive_filtering.mexmaci
perform_arithmetic_coding.m
perform_arithmetic_coding_fixed.dll
perform_arithmetic_coding_fixed.mexglx
perform_arithmetic_coding_mex.dll
perform_arithmetic_coding_mex.mexglx
perform_arithmetic_coding_mex.mexmaci
perform_best_dct.m
perform_bilateral_filtering.m
perform_chirpz_transform.m
perform_classical_mds.m
perform_conditional_histogram_matching.m
perform_convolution.m
perform_dct_transform--OLD.m
perform_dct_transform.m
perform_directional_filtering.m
perform_fast_rbf_interpolation.m
perform_histogram_equalization.m
perform_histogram_matching.m
perform_image_similitude.m
perform_kmeans.m
perform_ksvd.m
perform_laplacian_fitting.m
perform_local_dct_transform.m
perform_median_filtering.m
perform_moment_equalization.m
perform_noise_estimation.m
perform_omp.m
perform_quantization.m
perform_rbf_interpolation.m
perform_rle_coding.m
perform_shannon_estimation.m
perform_shannon_interpolation.m
perform_shape_smoothing.m
perform_sparse_inversion.m
perform_spectral_orthogonalization.m
perform_thresholding.m
perform_vector_quantization.m
perform_walsh_transform.m
perform_windowed_fourier_transform - copie.m
perform_windowed_fourier_transform.m
plot_best_basis.m
psnr.m
rand_discr.m
read_lum.m
readme.txt
results
rgb2ycbcr.m
select_region.m
select_sub_image.m
symmetric_extension.m
tensorial_transform.m
test_adaptive_filtering.m
test_arithfixed.m
test_arithmetic_coder.m
test_bilateral.m
test_convolution.m
test_directional_filtering.m
test_eucldist.m
test_filter.m
test_histo_equalization.m
test_image_similitude.m
test_ksvd.m
test_omp.m
test_plot_dct.m
test_rbf.m
test_rle.m
test_structure_tensor.m
test_svd_image.m
test_vq.m
test_windowed_fourier_transform.m
toolbox
write_lum.m
ycbcr2rgb.m

相 关 资 源

您 可 能 感 兴 趣 的

同 类 别 推 荐

VIP VIP
0.214496s