首页| JavaScript| HTML/CSS| Matlab| PHP| Python| Java| C/C++/VC++| C#| ASP| 其他|
购买积分 购买会员 激活码充值

您现在的位置是:虫虫源码 > Java > 多任务学习的状态因子方法

多任务学习的状态因子方法

  • 资源大小:80.65 kB
  • 上传时间:2021-06-30
  • 下载次数:0次
  • 浏览次数:1次
  • 资源积分:1积分
  • 标      签: 学习 任务 方法 状态 因子

资 源 简 介

MT-factor performs multi-task learning for the state factors (e.g., interacting objects) in model-based Reinforcement Learning. MT-factors shares data between similar state factors and, thus, allows the agent to make accurate plans in high-dimensional problems. The main code of the implementation is written in R with Fitted Q-learning part written in Java. Please see the Installation Guide for how to set it up.

文 件 列 表

mt-factors
boat_results_success.eps
FQServer2.class
boat1_test_intmodel.R
setup.txt
rjava-functions.R
boat1_test_models.R
rsge-test-new.R
boat1_test_fqfail3.R
FQClient.class
boat1_run_sges.R
rsge-test.R
boat1_test_fqfail.R
FittedQ.class
boat1_run_sge.R
boat1_test_mpi3.R
Matrix.java
boat1_test_mpi4.R
boat1_test_fqfail2.R
boat1_test_qfun.R
boat1_test_sge.R
FQServer2.java
boat1_test_qiter.R
boat1_test_mpi.R
boat1_fqs_client.R
ExtraTrees.java
ExtraTrees.class
boat_results_value.pdf
fittedq-java
neg_ge_plotting.R
boat1_test_probfun.R
boat1_test_data_speed.R
boat1_model.R
FittedQ.java
BinaryTree.java
boat1_test_safeat.R
boat1_test_holdout.R
boat1_test_features.R
rjava-test.R
boat_results_value.eps
FQServer2$ClientConn.class
boat1_test_mpolicy.R
FQClient.java
route.pdf
do_plotting_ge.R
Matrix.class
BinaryTree.class
boat_plot_results.R
boat1_example.R
boat1_test_mpi2.R
boat1_test_qitermodel.R
boat1_test.R
gwf1_do_plotting.R
install.txt

相 关 资 源

您 可 能 感 兴 趣 的

同 类 别 推 荐

VIP VIP